Subnanowatt carbon nanotube complementary logic enabled by threshold voltage control.
نویسندگان
چکیده
In this Letter, we demonstrate thin-film single-walled carbon nanotube (SWCNT) complementary metal-oxide-semiconductor (CMOS) logic devices with subnanowatt static power consumption and full rail-to-rail voltage transfer characteristics as is required for logic gate cascading. These results are enabled by a local metal gate structure that achieves enhancement-mode p-type and n-type SWCNT thin-film transistors (TFTs) with widely separated and symmetric threshold voltages. These complementary SWCNT TFTs are integrated to demonstrate CMOS inverter, NAND, and NOR logic gates at supply voltages as low as 0.8 V with ideal rail-to-rail operation, subnanowatt static power consumption, high gain, and excellent noise immunity. This work provides a direct pathway for solution processable, large area, power efficient SWCNT advanced logic circuits and systems.
منابع مشابه
Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible complementary circuits.
Tuning the threshold voltage of a transistor is crucial for realizing robust digital circuits. For silicon transistors, the threshold voltage can be accurately controlled by doping. However, it remains challenging to tune the threshold voltage of single-wall nanotube (SWNT) thin-film transistors. Here, we report a facile method to controllably n-dope SWNTs using 1H-benzoimidazole derivatives pr...
متن کاملA Novel Design of Penternary Inverter Gate Based on Carbon Nano Tube
This paper investigates a novel design of penternary logic gates usingcarbon nanotube field effect transistors (CNTFETs). CNTFET is a suitable candidate forreplacing MOSFET with some useful properties, such as the capability of having thedesired threshold voltage by regulating the diameter of the nanotubes. Multiple-valuedlogic (MVL) such as ternary, quaternary, and penternary is a promising al...
متن کاملOrganic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates.
We report the implementation of three dimensionally cross-linked, organic nanodielectric multilayers as ultrathin gate dielectrics for a type of thin film transistor device that uses networks of single-walled carbon nanotubes as effective semiconductor thin films. Unipolar n- and p-channel devices are demonstrated by use of polymer coatings to control the behavior of the networks. Monolithicall...
متن کاملCarbon Nanotube Inter- and Intramolecular Logic Gates
Single wall carbon nanotubes (SWCNTs) have been used as the active channels of field effect transistors (FET). The next development step involves the integration of CNTFETs to form logic gates; the basic units of computers. For this we need to have both pand n-type CNTFETs. However, without special treatment, the obtained CNTFETs are always p-type: the current carriers are holes and the devices...
متن کاملBand Engineering of Partially Exposed Carbon Nanotube Field - Effect Transistors
Submitted for the MAR05 Meeting of The American Physical Society Band Engineering of Partially Exposed Carbon Nanotube FieldEffect Transistors XIAOLEI LIU, ZHICHENG LUO, SONG HAN, TAO TANG, DAIHUA ZHANG, CHONGWU ZHOU, University of Southern California — We present a new approach to engineer the band structure of carbon nanotube fieldeffect transistors via selected area chemical gating. By expos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 13 10 شماره
صفحات -
تاریخ انتشار 2013